4.2 Null Spaces, Column Spaces, Row Spaces, and Linear Transformations

The Null Space of a Matrix

Definition (null space)

The **null space** of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

Nul $A = {\mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0}}$

A more dynamic description of Nul A is the set of all \mathbf{x} in \mathbb{R}^n that are mapped into the zero vector of \mathbb{R}^m via the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$. See the following figure.

Theorem 2.

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Example 3. In the following exercises, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

(1)
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b + c = 2 \right\}$$

Note W is a subset of \mathbb{R}^3 . If W is a vector space, the W is
a subspace of \mathbb{R}^3 . But since the zero vector is not W.
W is not a vector space.
(2) $\left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a+3b=c \\ b+c+a=d \right\} \Leftrightarrow \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a+3b-c=0 \\ b+c+a-d=0 \right\}$
The set W is the set of all the solutions to the homogeneous
egn $\left\{ a+3b-c=0 \\ a+3b-c=0 \\ these = 0 \end{bmatrix}$ Thus W= Nul A, where $A = \begin{bmatrix} 1 & 3 & -1 & 0 \\ 1 & 1 & -1 \\ these = 1 \\ these = 0 \end{bmatrix}$.
Thus W is a subspace of \mathbb{R}^4 by Thm D, and it is a vector space.
(3) $\left\{ \begin{bmatrix} b-5d \\ 2d \\ 2d \\ 2d \\ 2d + 1 \\ d \end{bmatrix} : b, dreal \right\}$
The set W is a subspace of \mathbb{R}^4 . But W is a vector space, then
it would be a subspace of \mathbb{R}^4 . But W is not a subspace of \mathbb{R}^4
Since the zero vector is not in W. Thus W is not a
Vector space.

An Explicit Description of Nul ${\cal A}$

Example 3. Find an explicit description of $\mathrm{Nul}A$ by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ANS: First we find the general solution to $A = \vec{0}$.

$$\begin{bmatrix} A & \vec{0} \end{bmatrix} = \begin{bmatrix} 0 & -2 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & -9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Basic varibles: $x_1 \quad x_3$, x_5 . Free varibles: x_2, x_8 .

$$\begin{cases} x_1 = 2x_2 - 4x_4 \\ x_5 = 0 \\ \\ x_6 \\ x_4 \\ x_6 \\ \\ x_6 \\$$

The Column Space of a Matrix

Definition The **column space** of an $m \times n$ matrix A, written as $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

$$\operatorname{Col} A = \operatorname{Span} \left\{ \mathbf{a}_1, \dots, \mathbf{a}_n
ight\}$$

Theorem 3.

The column space of an m imes n matrix A is a subspace of \mathbb{R}^m .

In set notation,

 $\operatorname{Col} A = \{ \mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n \}$

The notation $A{f x}$ for vectors in ${
m Col}\,A$ also shows that ${
m Col}\,A$ is the range of the linear transformation ${f x}\mapsto A{f x}$

Recall from Theorem 4 in Section 1.4 that the columns of $A \operatorname{span} \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} . We can restate this fact as follows:

Theorem The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^m .

Example 4. Find A such that the given set is $\operatorname{Col} A$.

$$\left(egin{bmatrix} 2s+3t\ r+s-2t\ 4r+s\ 3r-s-t \end{bmatrix}:r,s,t ext{ real }
ight\}$$

Example 5. For the matrix given, (a) find k such that NulA is a subspace of \mathbb{R}^k , and (b) find k such that ColA is a subspace of \mathbb{R}^k .

$\begin{bmatrix} 7 & -2 & 0 \\ -2 & 0 & -5 \end{bmatrix}$	The matrix A is a 4x3 matrix. So
$A = \begin{bmatrix} 0 & -5 & 7 \\ -5 & 7 & -2 \end{bmatrix}$	(a) NulA is a subspace of R ³ .
	(b) ColA is a subspace of R4

Contrast Between Nul A and Col A for an $m\times n$ Matrix A

Nul A	$\operatorname{Col} A$
1. Nul A is a subspace of $\mathbb{R}^n.$	1. $\operatorname{Col} A$ is a subspace of \mathbb{R}^m .
2. Nul A is implicitly defined; that is, you are given only a condition $(A\mathbf{x}=0)$ that vectors in Nul A must satisfy.	2. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
3. It takes time to find vectors in Nul A . Row operations on $\begin{bmatrix} A & 0 \end{bmatrix}$ are required.	3. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between Nul A and the entries in $A.$	4. There is an obvious relation between $\operatorname{Col} A$ and the entries in A , since each column of A is in $\operatorname{Col} A$.
5. A typical vector ${f v}$ in ${ m Nul}A$ has the property that $A{f v}={f 0}.$	5. A typical vector ${f v}$ in ${ m Col}A$ has the property that the equation $A{f x}={f v}$ is consistent.
6. Given a specific vector ${f v}$, it is easy to tell if ${f v}$ is in Nul $A.$ Just compute $A{f v}.$	6. Given a specific vector ${f v}$, it may take time to tell if ${f v}$ is in ${ m Col}A$. Row operations on $[A \ {f v}]$ are required.
7. Nul $A=\{0\}$ if and only if the equation $A\mathbf{x}=0$ has only the trivial solution.	7. $\operatorname{Col} A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
8. $\operatorname{Nul} A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.	8. $\operatorname{Col} A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Exercise 6. Let $A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Determine if \mathbf{w} is in Col A. Is w in Nul A?

Solution. Consider the system with augmented matrix $\begin{bmatrix} A & \mathbf{w} \end{bmatrix}$. Since $\begin{bmatrix} A & \mathbf{w} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1/3 \\ 0 & 0 & 0 \end{bmatrix}$, the system is consistent and \mathbf{w} is in Col A. Also, since $A\mathbf{w} = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, \mathbf{w} is in Nul A.

Exercise 7. Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Given a subspace Z of W, let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V.

Solution.

- Since Z is a subspace of W, $\mathbf{0}_W$ is in Z. Since T is linear, $T(\mathbf{0}_V) = \mathbf{0}_W$. So $\mathbf{0}_V$ is in U.
- Let \mathbf{x} and \mathbf{y} be typical elements in U. Then $T(\mathbf{x})$ and $T(\mathbf{y})$ are in Z, and since Z is a subspace of $W, T(\mathbf{x}) + T(\mathbf{y})$ is also in Z. Since T is linear, $T(\mathbf{x}) + T(\mathbf{y}) = T(\mathbf{x} + \mathbf{y})$. So $T(\mathbf{x} + \mathbf{y})$ is in Z, and $\mathbf{x} + \mathbf{y}$ is in U. Thus U is closed under vector addition.
- Let c be any scalar. Then since \mathbf{x} is in $U, T(\mathbf{x})$ is in Z. Since Z is a subspace of $W, cT(\mathbf{x})$ is also in Z. Since T is linear, $cT(\mathbf{x}) = T(c\mathbf{x})$ and T(cx) is in T(U). Hence U Thus cx is in U and U is closed under scalar multiplication. Is a subspace of V.