4.2 Null Spaces, Column Spaces, Row Spaces, and Linear Transformations

The Null Space of a Matrix

Definition (null space)

The null space of an $m \times n$ matrix A, written as $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. In set notation,

$$
\operatorname{Nul} A=\left\{\mathbf{x}: \mathbf{x} \text { is in } \mathbb{R}^{n} \text { and } A \mathbf{x}=\mathbf{0}\right\}
$$

A more dynamic description of $\operatorname{Nul} A$ is the set of all \mathbf{x} in \mathbb{R}^{n} that are mapped into the zero vector of \mathbb{R}^{m} via the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$. See the following figure.

FIGURE 1

Example 1. Determine if $\mathbf{w}=\left[\begin{array}{r}5 \\ -3 \\ 2\end{array}\right]$ is in Nut A, where $A=\left[\begin{array}{rrr}5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1\end{array}\right]$.
ANS: $A \vec{D}=\left[\begin{array}{ccc}5 & 21 & 19 \\ 13 & 23 & 2 \\ 8 & 14 & 1\end{array}\right]\left[\begin{array}{c}5 \\ -3 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
thus $\vec{\omega} \in N_{M I} A$

Theorem 2.
The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}. Equivalently, the set of all solutions to a system $A \mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^{n}.

Example 3. In the following exercises, either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.
(1) $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=2\right\}$

Note W is a subset of \mathbb{R}^{3}. If W is a vector space, the W is a subspace of \mathbb{R}^{3}. But since the zero vector is not W, W is not a vector space.

$$
\text { (2) } \left.\left\{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \begin{array}{l}
a+3 b=c \\
\vdots+c+a=d
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]: \begin{array}{l}
a+3 b-c=0 \\
b+c+a-d=0
\end{array}\right\}
$$

The set W is the set of all the solutions to the homogeneous eqn $\left\{\begin{array}{l}a+3 b-c=0 \\ a+b+c-d=0\end{array}\right.$. Thus $W=\operatorname{NnI} A$, where $A=\left[\begin{array}{cccc}1 & 3 & -1 & 0 \\ 1 & 1 & 1 & -1\end{array}\right]$. Thus W is a subspace of \mathbb{R}^{4} by $T h m$), and it is a vector space. (3) $\left\{\left[\begin{array}{c}b-5 d \\ 2 b \\ 2 d+1 \\ d\end{array}\right]: b, d\right.$ real $\}$

The set W is a subset of \mathbb{R}^{4}. If W is a vector space, then it would be a subspace of \mathbb{R}^{4}. But W is not a subspace of \mathbb{R}^{4} since the zero vector is not in w. Thus w is not a Vector space.

An Explicit Description of NuT A
Example 3. Find an explicit description of $\mathrm{Nul} A$ by listing vectors that span the null space.

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & 0 & 4 & 0 \\
0 & 0 & 1 & -9 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

ANS: First we find the general solution to $A \vec{x}=\overrightarrow{0}$.

$$
\left[\begin{array}{ll}
A & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & -2 & 0 & 4 & 0 & 0 \\
0 & 0 & (1) & -9 & 0 & 0 \\
0 & 0 & 0 & 0 & (1) & 0
\end{array}\right]
$$

Basic varibles: $x_{1} x_{3}, x_{5}$. Free varibles: x_{2}, x_{4}

$$
\left\{\begin{array}{l}
x_{1}=2 x_{2}-4 x_{4} \\
x_{3}=9 x_{4} \\
x_{5}=0
\end{array}\right.
$$

So

$$
\begin{aligned}
& x_{s}=0 \\
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-4 x_{4} \\
x_{2} \\
9 x_{4} \\
x_{4} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-4 \\
0 \\
9 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

and a spanning set for NulL is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 9 \\ 1 \\ 0\end{array}\right]\right\}$

The Column Space of a Matrix
Definition The column space of an $m \times n$ matrix A, written as $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}
$$

Theorem 3.
The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.
In set notation,

$$
\operatorname{Col} A=\left\{\mathbf{b}: \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \text { in } \mathbb{R}^{n}\right\}
$$

The notation $A \mathbf{x}$ for vectors in $\operatorname{Col} A$ also shows that $\operatorname{Col} A$ is the range of the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$

Recall from Theorem 4 in Section 1.4 that the columns of $A \operatorname{span} \mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b}. We can restate this fact as follows:

Theorem The column space of an $m \times n$ matrix A is all of \mathbb{R}^{m} if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{m}.

Example 4. Find A such that the given set is $\operatorname{Col} A$.

$$
\left\{\left[\begin{array}{c}
2 s+3 t \\
r+s-2 t \\
4 r+s \\
3 r-s-t
\end{array}\right]: r, s, t \text { real }\right\}
$$

ANS: An element in the given set can be written

$$
\text { as } r\left[\begin{array}{l}
0 \\
1 \\
4 \\
3
\end{array}\right]+s\left[\begin{array}{c}
2 \\
1 \\
1 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-2 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 & 3 \\
1 & 1 & -2 \\
4 & 1 & 0 \\
3 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]
$$

where $r, s, t \in \mathbb{R}$.

$$
\text { So the set is Col } A \text { when } A=\left[\begin{array}{ccc}
0 & 2 & 3 \\
1 & 1 & -2 \\
4 & 1 & 0 \\
3 & -1 & -1
\end{array}\right]
$$

Example 5. For the matrix given, (a) find k such that $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{k}, and (b) find k such that $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}.
$\left[\begin{array}{rrr}7 & -2 & 0 \\ -2 & 0 & 5\end{array}\right] \quad$ The matrix A is a 4×3 matrix. So (a) NolA is a subspace of \mathbb{R}^{3}.
(b) ColA is a subspace of \mathbb{R}^{4}

Contrast Between Vul A and Col A for an $m \times n$ Matrix A

Nus A Col A

1. Vul A is a subspace of \mathbb{R}^{n}.
2. Nut A is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=\mathbf{0})$ that vectors in Vul A must satisfy.
3. It takes time to find vectors in Vul A. Row operations on $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ are required.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.
5. A typical vector \mathbf{v} in $\operatorname{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.
6. $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
7. $\operatorname{Col} A$ is explicitly defined; that is, you are told how to build vectors in $\operatorname{Col} A$.
8. It is easy to find vectors in $\operatorname{Col} A$. The columns of A are displayed; others are formed from them.
9. There is an obvious relation between $\operatorname{Col} A$ and the entries in A, since each column of A is in $\operatorname{Col} A$.
10. A typical vector \mathbf{v} in $\operatorname{Col} A$ has the property that the equation $A \mathbf{x}=\mathbf{v}$ is consistent.
11. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in Nu A. Just compute $A \mathbf{v}$.
12. Nul $A=\{0\}$ if and only if the equation $A \mathrm{x}=\mathbf{0}$ has only the trivial solution.
13. Given a specific vector \mathbf{v}, it may take time to tell if \mathbf{v} is in $\operatorname{Col} A$. Row operations on $\left[\begin{array}{ll}A & \mathbf{v}\end{array}\right]$ are required.
14. Nub $A=\{0\}$ if and only if the linear
transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
15. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.
16. $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

Exercise 6. Let $A=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Determine if \mathbf{w} is in Col A. Is \mathbf{w} in Nul A ?

Solution. Consider the system with augmented matrix $\left[\begin{array}{ll}A & \mathbf{w}\end{array}\right]$. Since $\left[\begin{array}{ll}A & \mathbf{w}\end{array}\right] \sim\left[\begin{array}{rrr}1 & -2 & -1 / 3 \\ 0 & 0 & 0\end{array}\right]$, the system is consistent and \mathbf{w} is in $\operatorname{Col} A$. Also, since $A \mathbf{w}=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right], \mathbf{w}$ is in Nul A.

Exercise 7. Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Given a subspace Z of W, let U be the set of all \mathbf{x} in V such that $T(\mathbf{x})$ is in Z. Show that U is a subspace of V.

Solution.

- Since Z is a subspace of $W, \mathbf{0}_{W}$ is in Z. Since T is linear, $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$. So $\mathbf{0}_{V}$ is in U.
- Let \mathbf{x} and \mathbf{y} be typical elements in U. Then $T(\mathbf{x})$ and $T(\mathbf{y})$ are in Z, and since Z is a subspace of $W, T(\mathbf{x})+T(\mathbf{y})$ is also in Z. Since T is linear, $T(\mathbf{x})+T(\mathbf{y})=T(\mathbf{x}+\mathbf{y})$. So $T(\mathbf{x}+\mathbf{y})$ is in Z, and $\mathbf{x}+\mathbf{y}$ is in U. Thus U is closed under vector addition.
- Let c be any scalar. Then since \mathbf{x} is in $U, T(\mathbf{x})$ is in Z. Since Z is a subspace of $W, c T(\mathbf{x})$ is also in Z. Since T is linear, $c T(\mathbf{x})=T(c \mathbf{x})$ and $T(c x)$ is in $T(U)$. Hence U Thus $c x$ is in U and U is closed under scalar multiplication.is a subspace of V.

